Estrategias Terapéuticas para la Osteoporosis: Vitamina D, Vitamina C y Magnesio en Foco
Análisis detallado de las intervenciones terapéuticas actuales para la osteoporosis en la aplicación de vitamina D, vitamina C y magnesio, desde la base molecular hasta la evidencia clínica.
La osteoporosis, una condición caracterizada por la disminución de la densidad mineral ósea, presenta desafíos significativos en su tratamiento.
Vitamina D: Regulación del Metabolismo Óseo: La vitamina D, conocida por su papel en la homeostasis del calcio, desempeña un papel fundamental en el metabolismo óseo. Desde la conversión cutánea hasta la activación en el hígado y los riñones, cada paso se analiza para entender cómo la vitamina D influye en la mineralización ósea y la prevención de fracturas.
Vitamina C: Colágeno y Matriz Extracelular:
La vitamina C, reconocida por su función en la síntesis de colágeno, emerge como un componente esencial en la formación y mantenimiento de la matriz extracelular ósea. Se examinan los mecanismos moleculares detrás de esta contribución y su relevancia en la resistencia estructural del hueso.
Magnesio: Coordinación Mineral y Densidad Ósea: El magnesio, a menudo subestimado en el contexto óseo, revela su importancia en la coordinación mineral y la regulación de la densidad ósea. Este segmento del artículo se sumerge en las interacciones iónicas y las vías de señalización que vinculan el magnesio con la salud ósea, proporcionando una base molecular sólida.
Interacciones y Sinergias entre Nutrientes: El cuerpo humano es un sistema complejo, y la interacción entre nutrientes es crucial para comprender la eficacia de las intervenciones terapéuticas. Se analizan las sinergias y antagonismos potenciales entre la vitamina D, vitamina C y magnesio, destacando la importancia de una ingesta equilibrada para optimizar los beneficios para la salud ósea.
Evidencia Clínica: Enfoque en Resultados Óseos. La aplicación práctica de estas intervenciones terapéuticas se examina a través de la lente de la evidencia clínica. Estudios controlados y revisiones sistemáticas proporcionan una evaluación crítica de la eficacia de la suplementación con vitamina D, vitamina C y magnesio en la prevención y tratamiento de la osteoporosis.
Consideraciones Individuales: Personalización de la Terapia. La variabilidad genética y las diferencias individuales en la absorción y metabolismo de estos nutrientes requieren una consideración personalizada en la prescripción de terapias. Este segmento destaca la importancia de evaluar la idoneidad de estas intervenciones en función de las características específicas de cada paciente.
Riesgos y Limitaciones: A pesar de los beneficios potenciales, la suplementación no está exenta de riesgos. Se examinan los posibles efectos adversos asociados con dosis elevadas de vitamina D, interacciones medicamentosas y consideraciones de toxicidad del magnesio, subrayando la necesidad de una supervisión médica adecuada.
Conclusiones: Integración de Terapias Nutricionales. La vitamina D, vitamina C y magnesio, cada uno desde su perspectiva bioquímica única, contribuyen de manera integral a la salud ósea. Su incorporación estratégica en los regímenes terapéuticos puede ofrecer beneficios significativos en la gestión de la osteoporosis.
Puntos Clave:
La vitamina D regula el metabolismo óseo, influyendo en la mineralización y prevención de fracturas.
La vitamina C es esencial en la síntesis de colágeno y contribuye a la resistencia estructural del hueso.
El magnesio desempeña un papel crucial en la coordinación mineral y la regulación de la densidad ósea.
La interacción equilibrada entre estos nutrientes es esencial para optimizar los beneficios para la salud ósea.
La evidencia clínica respalda la eficacia de estas intervenciones, pero la personalización y la monitorización son fundamentales para abordar riesgos y limitaciones.
Referencias bibliográficas:
2. Salzberg S (2022) Stop Taking Vitamin D Already! Forbes https://www.forbes.com/sites/stevensalzberg/2022/08/01/stop-taking-vitamin-d-already
3. Micronutrients for Viral Infections - Reference Bibliography. ISOM https://isom.ca/micronutrients-viral-infections
4. Grant WB. (2021) Vitamin D's Role in Reducing Risk of SARS-CoV-2 and COVID-19 Incidence, Severity, and Death. Nutrients 14:183. https://pubmed.ncbi.nlm.nih.gov/35011058
5. Deardorff WJ, Cenzer I, Nguyen B, Lee SJ (2022) Time to Benefit of Bisphosphonate Therapy for the Prevention of Fractures Among Postmenopausal Women With Osteoporosis: A Meta-analysis of Randomized Clinical Trials. JAMA Intern Med. 182:33-41. https://pubmed.ncbi.nlm.nih.gov/34807231
6. Zhao J-G, Zeng X-T, Wang J Liu L (2017) Association Between Calcium or Vitamin D Supplementation and Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. JAMA 318:2466-2482. https://pubmed.ncbi.nlm.nih.gov/29279934
7. Park, J-M, et al. (2022) Calcium Supplementation, Risk of Cardiovascular Diseases, and Mortality: A Real-World Study of the Korean National Health Insurance Service Data. Nutrients 14:2538. https://pubmed.ncbi.nlm.nih.gov/35745268
8. Levy T. (2013) Death By Calcium. MedFox Pub. ISBN-13: 978-0615889603 https://www.medfoxpub.com/medicalnews/product/S-DBC/Death-by-Calcium/Death-by-Calcium
9. Levy T, 成长. 隐形杀手---补钙剂(中文版): 补钙无助于骨质疏松, 反而促进血管硬化, 心脏病(中文版)。 (Kindle Publisher, 2017).
10. Nakamura K, Saito T, Kobayashi R, et al. (2011) C-reactive protein predicts incident fracture in community-dwelling elderly Japanese women: the Muramatsu study. Osteoporos Int. 22:2145-2150. https://pubmed.ncbi.nlm.nih.gov/20936400
11. Lacativa PGS, Farias MLF (2010) de. Osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 54:123-132. https://pubmed.ncbi.nlm.nih.gov/20485900
12. Mikirova N, Casciari J, Rogers A, Taylor P (2012) Effect of high-dose intravenous vitamin C on inflammation in cancer patients. J Transl Med. 10:189. https://pubmed.ncbi.nlm.nih.gov/22963460
13. Carinci F, Pezzetti F, Spina AM, et al. (2005) Effect of Vitamin C on pre-osteoblast gene expression. Arch Oral Biol. 50:481-496. https://pubmed.ncbi.nlm.nih.gov/15777530
14. Choi K-M, Seo Y-K, Yoon H-H, et al. (2008) Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng 105:586-594. https://pubmed.ncbi.nlm.nih.gov/18640597
15. Maehata Y, Takamizawa S, Ozawa S, et al. (2007) Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol 26:371-381. https://pubmed.ncbi.nlm.nih.gov/17306970
16. Sahni S, Hannan MT, Gagnon D, et al. (2009) Protective effect of total and supplemental vitamin C intake on the risk of hip fracture--a 17-year follow-up from the Framingham Osteoporosis Study. Osteoporos Int. 20:1853-1861. https://pubmed.ncbi.nlm.nih.gov/19347239
17. Martínez-Ramírez MJ, Pérez SP, Delgado-Martínez AD, et al. (2007) Vitamin C, vitamin B12, folate and the risk of osteoporotic fractures. A case-control study. Int J Vitam Nutr Res. 77:359-368. https://pubmed.ncbi.nlm.nih.gov/18622945
18. Morton DJ, Barrett-Connor EL, Schneider DL (2001) Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res. 16:135-140. https://pubmed.ncbi.nlm.nih.gov/11149477
19. Zhu L-L, Cao J, Sun M, et al. (2012) Vitamin C prevents hypogonadal bone loss. PLoS One 7:e47058. https://pubmed.ncbi.nlm.nih.gov/23056580
20. Yilmaz C, Erdemli E, Selek H, et al. (2001) The contribution of vitamin C to healing of experimental fractures. Arch Orthop Trauma Surg. 121:426-428. https://pubmed.ncbi.nlm.nih.gov/11510911
21. Alcantara-Martos T, Delgado-Martinez AD, Vega MV, et al. (2007) Effect of vitamin C on fracture healing in elderly Osteogenic Disorder Shionogi rats. J Bone Joint Surg Br. 89:402-407. https://pubmed.ncbi.nlm.nih.gov/17356161
22. Fawcett WJ, Haxby EJ, Male DA (1999) Magnesium: physiology and pharmacology. Br J Anaesth. 83:302-320. https://pubmed.ncbi.nlm.nih.gov/10618948
23. Anghileri LJ (2009) Magnesium, calcium and cancer. Magnes Res. 22:247-255. https://pubmed.ncbi.nlm.nih.gov/20228002
24. Steidl L, Ditmar R (1990) Soft tissue calcification treated with local and oral magnesium therapy. Magnes Res. 3:113-119. https://pubmed.ncbi.nlm.nih.gov/2133625
25. Fox C, Ramsoomair D, Carter C (2001) Magnesium: its proven and potential clinical significance. South Med J. 94:1195-1201. https://pubmed.ncbi.nlm.nih.gov/11811859
26. Ryder KM, Shorr RI, Bush AJ, et al. (2005) Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc. 53:1875-1880. https://pubmed.ncbi.nlm.nih.gov/16274367
27. Woods KL, Fletcher S (1994) Long-term outcome after intravenous magnesium sulphate in suspected acute myocardial infarction: the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 343:816-819. https://pubmed.ncbi.nlm.nih.gov/7908076
28. Shechter M, Hod H, Rabinowitz B, Boyko V, Chouraqui P (2003) Long-term outcome of intravenous magnesium therapy in thrombolysis-ineligible acute myocardial infarction patients. Cardiology 99:205-210. https://pubmed.ncbi.nlm.nih.gov/12845247
29. Theuwissen E, Smit E, Vermeer C (2012) The role of vitamin K in soft-tissue calcification. Adv Nutr. 3:166-173. https://pubmed.ncbi.nlm.nih.gov/22516724
30. Schurgers LJ, Spronk HMH, Soute BAM, et al. (2007) Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood 109:2823-2831. https://pubmed.ncbi.nlm.nih.gov/17138823
31. Price PA, Faus SA, Williamson MK (1998) Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol. 18:1400-1407. https://pubmed.ncbi.nlm.nih.gov/9743228
32. Shiraki M, Shiraki Y, Aoki C, Miura M (2000) Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res. 15:515-521. https://pubmed.ncbi.nlm.nih.gov/10750566
33. Saito M (2009) [Effect of vitamin K on bone material properties]. Clin Calcium 19:1797-1804. https://pubmed.ncbi.nlm.nih.gov/19949271
34. Geleijnse JM, Vermeer D, Grobbeeet DE, et al. (2004) Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr. 134:3100-3105. https://pubmed.ncbi.nlm.nih.gov/15514282
35. Pucaj K, Rasmussen H, Møller M, Preston T (2011) Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7. Toxicol Mech Methods 21:520-532. https://pubmed.ncbi.nlm.nih.gov/21781006
36. Wacker M, Holick MF (2013) Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 5:111-148. https://pubmed.ncbi.nlm.nih.gov/23306192
37. Bolland MJ, Bacon CJ, Horne AM, et al. (2010) Vitamin D insufficiency and health outcomes over 5 y in older women. Am J Clin Nutr. 91:82-89. https://pubmed.ncbi.nlm.nih.gov/19906799
38. Masterjohn C (2007) Vitamin D toxicity redefined: vitamin K and the molecular mechanism. Med Hypotheses 68:1026-1034. https://pubmed.ncbi.nlm.nih.gov/17145139
39. Pekkinen M, Viljakainen H, Saarnio E, Lamberg-Allardt C, Mäkitie, O. (2012) Vitamin D is a major determinant of bone mineral density at school age. PLoS One 7:e40090. https://pubmed.ncbi.nlm.nih.gov/22768331
40. Semba RD, Houston DK, Bandinelli S, et al. (2010) Relationship of 25-hydroxyvitamin D with all-cause and cardiovascular disease mortality in older community-dwelling adults. Eur J Clin Nutr. 64:203-209. https://pubmed.ncbi.nlm.nih.gov/19953106
41. Schöttker B, Haug U, Schomburg L, et al. (2013) Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am J Clin Nutr. 97:782-793. https://pubmed.ncbi.nlm.nih.gov/23446902
42. Weinberg N, Young A, Hunter CJ, et al. (2012) Physical activity, hormone replacement therapy, and the presence of coronary calcium in midlife women. Women Health 52:423-436. https://pubmed.ncbi.nlm.nih.gov/22747181
43. Jeon G-H, Kim SH, Yun S-C, et al. (2010) Association between serum estradiol level and coronary artery calcification in postmenopausal women. Menopause 17:902-907. https://pubmed.ncbi.nlm.nih.gov/20512078
44. Osako MK, Nakagami H, Koibuchi N, et al. (2010) Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ Res. 107:466-475. https://pubmed.ncbi.nlm.nih.gov/20595654
45. Das UN (2002) Nitric oxide as the mediator of the antiosteoporotic actions of estrogen, statins, and essential fatty acids. Exp Biol Med. (Maywood) 227:88-93. https://pubmed.ncbi.nlm.nih.gov/11815671
46. de Villiers TJ, Stevenson JC (2012) The WHI: the effect of hormone replacement therapy on fracture prevention. Climacteric. 15:263-266. https://pubmed.ncbi.nlm.nih.gov/22612613
47. de Padua Mansur A, et al. (2012) Long-term prospective study of the influence of estrone levels on events in postmenopausal women with or at high risk for coronary artery disease. Scientific World Journal 2012, 363595. https://pubmed.ncbi.nlm.nih.gov/22701354
48. Mauvais-Jarvis F, Clegg DJ, Hevener AL (2013) The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 34:309-338. https://pubmed.ncbi.nlm.nih.gov/23460719
49. Torremadé-Barreda J, et al. (2013) [Testosterone-deficiency as a risk factor for hip fracture in eldery men]. Actas Urol Esp. 37:142-146. https://pubmed.ncbi.nlm.nih.gov/23246104
50. Oloyo AK, Sofola OA, Nair RR, et al. (2011) Testosterone relaxes abdominal aorta in male Sprague-Dawley rats by opening potassium (K(+)) channel and blockade of calcium (Ca(2+)) channel. Pathophysiology 18:247-253. https://pubmed.ncbi.nlm.nih.gov/21439799
51. Mearini L, Zucchi A, Nunzi E, et al. (2013) Low serum testosterone levels are predictive of prostate cancer. World J Urol. 31:247-252. https://pubmed.ncbi.nlm.nih.gov/22068548
52. Fukai S, Akishita M, Yamada S, et al. (2012) Plasma sex hormone levels and mortality in disabled older men and women. Geriatr Gerontol Int. 11:196-203. https://pubmed.ncbi.nlm.nih.gov/21143567
53. Grossmann M, Hoermann R, Gani L, et al. (2012) Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin Endocrinol (Oxf) 77:323-328. https://pubmed.ncbi.nlm.nih.gov/22280063
54. Boelaert K, Franklyn JA (2005) Thyroid hormone in health and disease. J Endocrinol. 187, 1-15. https://pubmed.ncbi.nlm.nih.gov/16214936
55. Williams GR (2009) Actions of thyroid hormones in bone. Endokrynol Pol. 60:380-388. https://pubmed.ncbi.nlm.nih.gov/19885809
56. Wojcicka A, Bassett JHD, Williams GR (2013) Mechanisms of action of thyroid hormones in the skeleton. Biochim Biophys Acta 1830:3979-3986. https://pubmed.ncbi.nlm.nih.gov/22634735
57. Sun L, Zhu L-L, Lu P, et al. (2013) Genetic confirmation for a central role for TNFα in the direct action of thyroid stimulating hormone on the skeleton. Proc Natl Acad Sci. USA 110:9891-9896. https://pubmed.ncbi.nlm.nih.gov/23716650
58. Ma R, Morshed S, Latif R, et al. (2011) The influence of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on osteoclastogenesis. Thyroid 21:897-906. https://pubmed.ncbi.nlm.nih.gov/21745106
59. Tseng F-Y, Lin W-Y, Lin C-C, et al. (2012) Subclinical hypothyroidism is associated with increased risk for all-cause and cardiovascular mortality in adults. J Am Coll Cardiol. 60:730-737. https://pubmed.ncbi.nlm.nih.gov/22726629
60. Ceresini G, Ceda GP, Lauretani F, et al. (2013) Thyroid status and 6-year mortality in elderly people living in a mildly iodine-deficient area: the aging in the Chianti Area Study. J Am Geriatr Soc. 61:868-874. https://pubmed.ncbi.nlm.nih.gov/23647402
61. Ye S, Tan L, Ma J, et al. (2010) Polyunsaturated docosahexaenoic acid suppresses oxidative stress induced endothelial cell calcium influx by altering lipid composition in membrane caveolar rafts. Prostaglandins Leukot Essent Fatty Acids 83:37-43. https://pubmed.ncbi.nlm.nih.gov/20206488
62. Pages N, Maurois P, Delplanque B, et al. (2011) Brain protection by rapeseed oil in magnesium-deficient mice. Prostaglandins Leukot Essent Fatty Acids 85:53-60. https://pubmed.ncbi.nlm.nih.gov/21664114
63. Farina EK, Kiel DP, Roubenoff R, et al. (2012) Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hip bone mineral density and hip fracture in older adults: the Framingham Osteoporosis Study. J Bone Miner Res. 27:1222-1230. https://pubmed.ncbi.nlm.nih.gov/22392875
64. Moon H-J, Kim T-H, Byun D-W, Park Y (2012) Positive correlation between erythrocyte levels of n-3 polyunsaturated fatty acids and bone mass in postmenopausal Korean women with osteoporosis. Ann Nutr Metab. 60:146-153. https://pubmed.ncbi.nlm.nih.gov/22507833
65. Pottala JV, Garg S, Cohen BE, et al. (2010) Blood eicosapentaenoic and docosahexaenoic acids predict all-cause mortality in patients with stable coronary heart disease: the Heart and Soul study. Circ Cardiovasc Qual Outcomes 3:406-412. https://pubmed.ncbi.nlm.nih.gov/20551373
66. Guzman RJ (2007) Clinical, cellular, and molecular aspects of arterial calcification. J Vasc Surg. 45(Suppl A):A57-63. https://pubmed.ncbi.nlm.nih.gov/17544025
67. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am. J. Med. 106:273-278. https://pubmed.ncbi.nlm.nih.gov/10190374
68. Bagger YZ, Tankó LB, Alexandersen P, et al. (2006) Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J. Intern. Med. 259:598-605. https://pubmed.ncbi.nlm.nih.gov/16704561
69. Anderson JJB, Kruszka B, Delaney JAC, et al. (2016) Calcium Intake From Diet and Supplements and the Risk of Coronary Artery Calcification and its Progression Among Older Adults: 10-Year Follow-up of the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Heart Assoc. 5:e003815. https://pubmed.ncbi.nlm.nih.gov/27729333
70. Jacobs PC, Gondrie MJA, van der Graaf Y, et al. (2012) Coronary artery calcium can predict all-cause mortality and cardiovascular events on low-dose CT screening for lung cancer. AJR Am J Roentgenol. 198:505-511. https://pubmed.ncbi.nlm.nih.gov/22357989
71. Kiramijyan S, Ahmadi N, Isma'eel H, et al. (2013) Impact of coronary artery calcium progression and statin therapy on clinical outcome in subjects with and without diabetes mellitus. Am J Cardiol. 111:356-361. https://pubmed.ncbi.nlm.nih.gov/23206921
72. Bai Y, Wang M-Y, Han Y-H, et al. (2013) Susceptibility weighted imaging: a new tool in the diagnosis of prostate cancer and detection of prostatic calcification. PLoS One 8:e53237. https://pubmed.ncbi.nlm.nih.gov/23308170
73. Gudermann T, Roelle S (2006) Calcium-dependent growth regulation of small cell lung cancer cells by neuropeptides. Endocr Relat Cancer 13:1069-1084. https://pubmed.ncbi.nlm.nih.gov/17158754
74. Kaufmann R, Hollenberg MD (2012) Proteinase-activated receptors (PARs) and calcium signaling in cancer. Adv Exp Med Biol. 740:979-1000. https://pubmed.ncbi.nlm.nih.gov/22453980
75. Ryu S, McDonnell K, Choi H, et al. (2013) Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23:63-76. https://pubmed.ncbi.nlm.nih.gov/23328481
76. Lin Q, Balasubramanian K, Fan D, et al. (2010) Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 12:748-754. https://pubmed.ncbi.nlm.nih.gov/20824051
77. Zhang Y, Kiel DP, Kreger BE, et al. (1997) Bone mass and the risk of breast cancer among postmenopausal women. N Engl J Med. 336:611-617. https://pubmed.ncbi.nlm.nih.gov/9032046
78. Holmberg L, Wong YNS, Tabár L, et al. (2013) Mammography casting-type calcification and risk of local recurrence in DCIS: analyses from a randomised study. Br J Cancer 108:812-819. https://pubmed.ncbi.nlm.nih.gov/23370209
79. Sakamoto M, Ikegami N, Nakano A (1996) Protective effects of Ca2+ channel blockers against methyl mercury toxicity. Pharmacol Toxicol. 78:193-199. https://pubmed.ncbi.nlm.nih.gov/8882354
80. Poch MA, Mehedint D, Green DJ, et al. (2013) The association between calcium channel blocker use and prostate cancer outcome. Prostate. 73:865-872. https://pubmed.ncbi.nlm.nih.gov/23280547
81. Chattipakorn N, Kumfu S, Fucharoen S, Chattipakorn S (2011) Calcium channels and iron uptake into the heart. World J Cardiol. 3:215-218. https://pubmed.ncbi.nlm.nih.gov/21860702
82. Martiniakova M, Babikova M, Mondockova V, et al. (2022) The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 14:523. https://pubmed.ncbi.nlm.nih.gov/35276879
83. Cheng RZ (2022) A Hallmark of Covid-19: Cytokine Storm/Oxidative Stress and its Integrative Mechanism. http://orthomolecular.org/resources/omns/v18n03.shtml
Comentarios
Publicar un comentario